Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.873
Filtrar
1.
BMC Med Genomics ; 17(1): 84, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609996

RESUMO

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL), an aggressive and heterogenic malignant entity, is still a challenging clinical problem, since around one-third of patients are not cured with primary treatment. Next-generation sequencing (NGS) technologies have revealed common genetic mutations in DLBCL. We devised an NGS multi-gene panel to discover genetic features of Chinese nodal DLBCL patients and provide reference information for panel-based NGS detection in clinical laboratories. METHODS: A panel of 116 DLBCL genes was designed based on the literature and related databases. We analyzed 96 Chinese nodal DLBCL biopsy specimens through targeted sequencing. RESULTS: The most frequently mutated genes were KMT2D (30%), PIM1 (26%), SOCS1 (24%), MYD88 (21%), BTG1 (20%), HIST1H1E (18%), CD79B (18%), SPEN (17%), and KMT2C (16%). SPEN (17%) and DDX3X (6%) mutations were highly prevalent in our study than in Western studies. Thirty-three patients (34%) were assigned as genetic classification by the LymphGen algorithm, including 12 cases MCD, five BN2, seven EZB, seven ST2, and two EZB/ST2 complex. MYD88 L265P mutation, TP53 and BCL2 pathogenic mutations were unfavorable prognostic biomarkers in DLBCL. CONCLUSIONS: This study presents the mutation landscape in Chinese nodal DLBCL, highlights the genetic heterogeneity of DLBCL and shows the role of panel-based NGS to prediction of prognosis and potential molecular targeted therapy in DLBCL. More precise genetic classification needs further investigations.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Linfoma Difuso de Grandes Células B , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Fator 88 de Diferenciação Mieloide/genética , Linfoma Difuso de Grandes Células B/genética , China
2.
J Pathol Clin Res ; 10(3): e12370, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38584594

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous and prevalent subtype of aggressive non-Hodgkin lymphoma that poses diagnostic and prognostic challenges, particularly in predicting drug responsiveness. In this study, we used digital pathology and deep learning to predict responses to immunochemotherapy in patients with DLBCL. We retrospectively collected 251 slide images from 216 DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), with their immunochemotherapy response labels. The digital pathology images were processed using contrastive learning for feature extraction. A multi-modal prediction model was developed by integrating clinical data and pathology image features. Knowledge distillation was employed to mitigate overfitting on gigapixel histopathology images to create a model that predicts responses based solely on pathology images. Based on the importance derived from the attention mechanism of the model, we extracted histological features that were considered key textures associated with drug responsiveness. The multi-modal prediction model achieved an impressive area under the ROC curve of 0.856, demonstrating significant associations with clinical variables such as Ann Arbor stage, International Prognostic Index, and bulky disease. Survival analyses indicated their effectiveness in predicting relapse-free survival. External validation using TCGA datasets supported the model's ability to predict survival differences. Additionally, pathology-based predictions show promise as independent prognostic indicators. Histopathological analysis identified centroblastic and immunoblastic features to be associated with treatment response, aligning with previous morphological classifications and highlighting the objectivity and reproducibility of artificial intelligence-based diagnosis. This study introduces a novel approach that combines digital pathology and clinical data to predict the response to immunochemotherapy in patients with DLBCL. This model shows great promise as a diagnostic and prognostic tool for clinical management of DLBCL. Further research and genomic data integration hold the potential to enhance its impact on clinical practice, ultimately improving patient outcomes.


Assuntos
Inteligência Artificial , Linfoma Difuso de Grandes Células B , Humanos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Rituximab/uso terapêutico , Linfoma Difuso de Grandes Células B/genética , Ciclofosfamida/uso terapêutico
3.
BMC Cancer ; 24(1): 432, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589831

RESUMO

BACKGROUND: One-third of diffuse large B-cell lymphoma (DLBCL) patients suffer relapse after standard treatment. Eukaryotic initiation factor 3a (eIF3a) is a key player in the initial stage of translation, which has been widely reported to be correlated with tumorigenesis and therapeutic response. This study aimed to explore the biological role of eIF3a, evaluate its prognostic and therapeutic potential in DLBCL. METHODS: RNA-seq datasets from GEO database were utilized to detect the expression and prognostic role of eIF3a in DLBCL patients. Protein level of eIF3a was estimated by western blot and immunohistochemical. Next, DLBCL cells were transfected with lentiviral vector either eIF3a-knockdown or empty to assess the biological role of eIF3a. Then, samples were divided into 2 clusters based on eIF3a expression and differentially expressed genes (DEGs) were identified. Function enrichment and mutation analysis of DEGs were employed to detect potential biological roles. Moreover, we also applied pan-cancer and chemosensitivity analysis for deep exploration. RESULTS: eIF3a expression was found to be higher in DLBCL than healthy controls, which was associated with worse prognosis. The expression of eIF3a protein was significantly increased in DLBCL cell lines compared with peripheral blood mononuclear cells (PBMCs) from healthy donors. eIF3a knockdown inhibited the proliferation of DLBCL cells and the expression of proliferation-related proteins and increase cell apoptosis rate. Besides, 114 DEGs were identified which had a close linkage to cell cycle and tumor immune. eIF3a and DEGs mutations were found to be correlated to chemosensitivity and vital signal pathways. Pan-cancer analysis demonstrated that high eIF3a expression was associated with worse prognosis in several tumors. Moreover, eIF3a expression was found to be related to chemosensitivity of several anti-tumor drugs in DLBCL, including Vincristine and Wee1 inhibitor. CONCLUSIONS: We firstly revealed the high expression and prognostic role of eIF3a in DLBCL, and eIF3a might promote the development of DLBCL through regulating cell proliferation and apoptosis. eIF3a expression was related to immune profile and chemosensitivity in DLBCL. These results suggest that eIF3a could serve as a potential prognostic biomarker and therapeutic target in DLBCL.


Assuntos
Antineoplásicos , Linfoma Difuso de Grandes Células B , Humanos , Leucócitos Mononucleares , Proliferação de Células/genética , Antineoplásicos/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/diagnóstico , Fatores de Iniciação de Peptídeos/farmacologia , Fatores de Iniciação de Peptídeos/uso terapêutico , Linhagem Celular Tumoral
4.
Cell Genom ; 4(4): 100537, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604128

RESUMO

Transcriptional dysregulation is a hallmark of diffuse large B cell lymphoma (DLBCL), as transcriptional regulators are frequently mutated. However, our mechanistic understanding of how normal transcriptional programs are co-opted in DLBCL has been hindered by a lack of methodologies that provide the temporal resolution required to separate direct and indirect effects on transcriptional control. We applied a chemical-genetic approach to engineer the inducible degradation of the transcription factor FOXO1, which is recurrently mutated (mFOXO1) in DLBCL. The combination of rapid degradation of mFOXO1, nascent transcript detection, and assessment of chromatin accessibility allowed us to identify the direct targets of mFOXO1. mFOXO1 was required to maintain accessibility at specific enhancers associated with multiple oncogenes, and mFOXO1 degradation impaired RNA polymerase pause-release at some targets. Wild-type FOXO1 appeared to weakly regulate many of the same targets as mFOXO1 and was able to complement the degradation of mFOXO1 in the context of AKT inhibition.


Assuntos
Linfoma Difuso de Grandes Células B , Sequências Reguladoras de Ácido Nucleico , Humanos , Fatores de Transcrição/genética , Linfoma Difuso de Grandes Células B/genética , Proteína Forkhead Box O1/genética
5.
Nat Commun ; 15(1): 2879, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570506

RESUMO

Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.


Assuntos
Linfoma Difuso de Grandes Células B , Animais , Camundongos , Linfócitos B/metabolismo , Cromatina/genética , Cromatina/metabolismo , Centro Germinativo/metabolismo , Linfoma Difuso de Grandes Células B/genética , Mutação , Microambiente Tumoral/genética
6.
J Immunother Cancer ; 12(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38443094

RESUMO

BACKGROUND: Over 50% of patients with relapsed or refractory large B-cell lymphoma (r/r LBCL) receiving CD19-targeted chimeric antigen receptor (CAR19) T-cell therapy fail to achieve durable remission. Early identification of relapse or progression remains a significant challenge. In this study, we prospectively investigate the prognostic value of dynamic circulating tumor DNA (ctDNA) and track genetic evolution non-invasively, for the first time in an Asian population of r/r patients undergoing CAR19 T-cell therapy. METHODS: Longitudinal plasma samples were prospectively collected both before lymphodepletion and at multiple timepoints after CAR19 T-cell infusion. ctDNA was detected using a capture-based next-generation sequencing which has been validated in untreated LBCL. RESULTS: The study enrolled 23 patients with r/r LBCL and collected a total of 101 ctDNA samples. Higher pretreatment ctDNA levels were associated with inferior progression-free survival (PFS) (p=0.031) and overall survival (OS) (p=0.023). Patients with undetectable ctDNA negative (ctDNA-) at day 14 (D14) achieved an impressive 3-month complete response rate of 77.8% vs 22.2% (p=0.015) in patients with detectable ctDNA positive (ctDNA+), similar results observed for D28. CtDNA- at D28 predicted significantly longer 1-year PFS (90.9% vs 27.3%; p=0.004) and OS (90.9% vs 49.1%; p=0.003) compared with patients who remained ctDNA+. Notably, it is the first time to report that shorter ctDNA fragments (<170 base pairs) were significantly associated with poorer PFS (p=0.031 for D14; p=0.002 for D28) and OS (p=0.013 for D14; p=0.008 for D28) in patients with LBCL receiving CAR T-cell therapy. Multiple mutated genes exhibited an elevated prevalence among patients with progressive disease, including TP53, IGLL5, PIM1, BTG1, CD79B, GNA13, and P2RY8. Notably, we observed a significant correlation between IGLL5 mutation and inferior PFS (p=0.008) and OS (p=0.014). CONCLUSIONS: Our study highlights that dynamic ctDNA monitoring during CAR T-cell therapy can be a promising non-invasive method for early predicting treatment response and survival outcomes. Additionally, the ctDNA mutational profile provides novel insights into the mechanisms of tumor-intrinsic resistance to CAR19 T-cell therapy.


Assuntos
DNA Tumoral Circulante , Linfoma Difuso de Grandes Células B , Humanos , DNA Tumoral Circulante/genética , Imunoterapia Adotiva , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/terapia , Genômica , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/terapia
7.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38512136

RESUMO

Diffuse large B cell lymphoma of activated B cell type (ABC-DLBCL), a major cell-of-origin DLBCL subtype, is characterized by chronic active B cell receptor (BCR) signaling and NF-κB activation, which can be explained by activating mutations of the BCR signaling cascade in a minority of cases. We demonstrate that autonomous BCR signaling, akin to its essential pathogenetic role in chronic lymphocytic leukemia (CLL), can explain chronic active BCR signaling in ABC-DLBCL. 13 of 18 tested DLBCL-derived BCR, including 12 cases selected for expression of IgM, induced spontaneous calcium flux and increased phosphorylation of the BCR signaling cascade in murine triple knockout pre-B cells without antigenic stimulation or external BCR crosslinking. Autonomous BCR signaling was associated with IgM isotype, dependent on somatic BCR mutations and individual HCDR3 sequences, and largely restricted to non-GCB DLBCL. Autonomous BCR signaling represents a novel immunological oncogenic driver mechanism in DLBCL originating from individual BCR sequences and adds a new dimension to currently proposed genetics- and transcriptomics-based DLBCL classifications.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Animais , Camundongos , Linfócitos B , Linfoma Difuso de Grandes Células B/genética , Receptores de Antígenos de Linfócitos B , Imunoglobulina M
8.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542066

RESUMO

To provide insights into targetable oncogenic pathways, this retrospective cohort study investigated the genetic profile of 26 patients with diffuse large B-cell lymphoma, not otherwise specified (DLBCL-NOS), and two patients with high-grade B-cell lymphoma with MYC and BCL2 rearrangements (HGBCL) presenting in the ocular adnexa. Pathogenic variants and copy number variations in 128 B-cell lymphoma-relevant genes were analyzed by targeted next-generation sequencing. Genetic subtypes were determined with the LymphGen algorithm. Primary ocular adnexal DLBCL-NOS constituted 50% (n = 14) and was generally characterized by non-germinal center B-cell origin (non-GCB) (n = 8, 57%), and LymphGen MCD subtype (n = 5, 36%). Primary ocular adnexal DLBCL-NOS presented pathogenic variants in genes involved in NF-κB activation and genes which are recurrently mutated in other extranodal lymphomas of non-GCB origin, including MYD88 (n = 4, 29%), CD79B (n = 3, 21%), PIM1 (n = 3, 21%), and TBL1XR1 (n = 3, 21%). Relapsed DLBCL-NOS presenting in the ocular adnexa (n = 6) were all of non-GCB origin and frequently of MCD subtype (n = 3, 50%), presenting with a similar genetic profile as primary ocular adnexal DLBCL-NOS. These results provide valuable insights into genetic drivers in ocular adnexal DLBCL-NOS, offering potential applications in future precision medicine.


Assuntos
Variações do Número de Cópias de DNA , Linfoma Difuso de Grandes Células B , Humanos , Estudos Retrospectivos , Perfil Genético , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética
9.
Cell Death Dis ; 15(3): 212, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485719

RESUMO

During the maturation of hematopoietic stem/progenitor cells (HSPCs) to fully differentiated mature B lymphocytes, developing lymphocytes may undergo malignant transformation and produce B-cell lymphomas. Emerging evidence shows that through the endothelial-hematopoietic transition, specialized endothelial cells called the hemogenic endothelium can differentiate into HSPCs. However, the contribution of genetic defects in hemogenic endothelial cells to B-cell lymphomagenesis has not yet been investigated. Here, we report that mice with endothelial cell-specific deletion of Fbw7 spontaneously developed diffuse large B-cell lymphoma (DLBCL) following Bcl6 accumulation. Using lineage tracing, we showed that B-cell lymphomas in Fbw7 knockout mice were hemogenic endothelium-derived. Mechanistically, we found that FBW7 directly interacted with Bcl6 and promoted its proteasomal degradation. FBW7 expression levels are inversely correlated with BCL6 expression. Additionally, pharmacological disruption of Bcl6 abolished Fbw7 deletion-induced B-cell lymphomagenesis. We conclude that selective deletion of E3 ubiquitin ligase FBW7 in VE-cadherin positive endothelial cells instigates diffuse large B-cell lymphoma via upregulation of BCL6 stability. In addition, the mice with endothelial cell-specific deletion of Fbw7 provide a valuable preclinical platform for in vivo development and evaluation of novel therapeutic interventions for the treatment of DLBCL.


Assuntos
Antígenos CD , Caderinas , Linfoma Difuso de Grandes Células B , Ubiquitina-Proteína Ligases , Animais , Camundongos , Células Endoteliais/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Sci Rep ; 14(1): 6161, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485750

RESUMO

The present study aimed to elucidate the prognostic mutation signature (PMS) associated with long-term survival in a diffuse large B-cell lymphoma (DLBCL) cohort. All data including derivation and validation cohorts were retrospectively retrieved from The Cancer Genome Atlas (TCGA) database and whole-exome sequencing (WES) data. The Lasso Cox regression analysis was used to construct the PMS based on WES data, and the PMS was determined using the area under the receiver operating curve (AUC). The predictive performance of eligible PMS was analyzed by time-dependent receiver operating curve (ROC) analyses. After the initial evaluation, a PMS composed of 94 PFS-related genes was constructed. Notably, this constructed PMS accurately predicted the 12-, 36-, and 60-month PFS, with AUC values of 0.982, 0.983, and 0.987, respectively. A higher level of PMS was closely linked to a significantly worse PFS, regardless of the molecular subtype. Further evaluation by forest plot revealed incorporation of international prognostic index or tumor mutational burden into PMS increased the prediction capability for PFS. The drug-gene interaction and pathway exploration revealed the PFS-related genes were associated with DNA damage, TP53, apoptosis, and immune cell functions. In conclusion, this study utilizing a high throughput genetic approach demonstrated that the PMS could serve as a prognostic predictor in DLBCL patients. Furthermore, the identification of the key signaling pathways for disease progression also provides information for further investigation to gain more insight into novel drug-resistant mechanisms.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Prognóstico , Estudos Retrospectivos , Mutação , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Dano ao DNA
11.
Discov Med ; 36(182): 621-631, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531803

RESUMO

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) poses a significant threat to the quality of life for people worldwide. Regrettably, effective treatment strategies for this disease remain elusive in clinical practice due to the unclear understanding of its molecular mechanisms. Therefore, this study was devised to address these issues and identify novel diagnostic, therapeutic, and prognostic biomarkers for DLBCL. METHODS: Gene expression and clinical data for DLBCL patients were retrieved from The Cancer Genome Atlas (TCGA) database, and relevant clinical data, tumor mutational burden (TMB), and gene expression levels were extracted. Bioinformatics analysis was conducted to screen for differentially expressed genes (DEGs). The prognostic significance of flotillin-2 (FLOT2) was assessed using Kaplan-Meier survival analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses were employed to evaluate mRNA and protein levels of the genes. Cell proliferation, apoptosis, and invasion were assessed using cell counting kit-8 (CCK-8) assay, flow cytometry analysis, and Transwell assay, respectively. RESULTS: Our bioinformatics analysis revealed that FLOT2 was significantly overexpressed in DLBCL tissues compared to normal tissues, a finding corroborated by subsequent immunohistochemistry staining, qRT-PCR, and Western blot analyses. To elucidate its biological functions, shRNAs targeting FLOT2 were transfected into DLBCL cell lines (LY-3 and U2932), resulting in suppressed cell proliferation and invasion, while promoting apoptosis. Furthermore, a positive correlation between TMB and FLOT2 expression in DLBCL was observed. Subsequently, quanTIseq was utilized to calculate the immune score and assess FLOT2 gene expression. In DLBCL, FLOT2 gene expression was found to be associated with T cell CD4+ (non-regulatory) (p < 0.01), monocytes (p < 0.05), and uncharacterized cells (p < 0.05). Regarding immune checkpoint markers, including the cluster of differentiation 274 (CD274), cytotoxic T lymphocyte-associated antigen-4 (CTLA4), hepatitis A virus cellular receptor 2 (HAVCR2), lymphocyte activation gene-3 (LAG3), programmed cell death protein 1 (PDCD1), programmed cell death 1 ligand 2 (PDCD1LG2), Siglec-15 (SIGLEC15), and T cell immunoreceptor with Ig and ITIM domains (TIGIT), our analysis indicated that in DLBCL, FLOT2 exhibited a relationship only with TIGIT (p < 0.05). CONCLUSIONS: In summary, FLOT2 functions as an oncogene and is linked to DLBCL prognosis and the tumor microenvironment. Targeting FLOT2 deletion emerges as a novel strategy to impede DLBCL aggressiveness by inhibiting cell proliferation and invasion, ultimately inducing apoptotic cell death.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas de Membrana , Qualidade de Vida , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Biomarcadores Tumorais/análise , Epigênese Genética , Receptores Imunológicos/genética , Microambiente Tumoral
12.
J Clin Exp Hematop ; 64(1): 21-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38538317

RESUMO

We characterized 5 B-cell tumors carrying t(14;19)(q32;q13) that creates the IGH::BCL3 fusion gene. The patients' ages ranged between 55 and 88 years. Two patients presented with progression or recurrence of B-cell chronic lymphocytic leukemia (B-CLL)/small lymphocytic lymphoma (SLL), two with diffuse large B-cell lymphoma (DLBCL) of non-germinal center B-like phenotype, and the remaining one with composite angioimmunoblastic T-cell lymphoma and Epstein-Barr virus-positive DLBCL. The presence of t(14;19)(q32;q13) was confirmed by fluorescence in situ hybridization (FISH), showing colocalization of 3' IGH and 3' BCL3 probes on der(14)t(14;19) and 5' BCL3 and 5' IGH probes on der(19)t(14;19). One B-CLL case had t(2;14)(p13;q32)/IGH::BCL11A, and 2 DLBCL cases had t(8;14)(q24;q32) or t(8;11;14)(q24;q11;q32), both of which generated IGH::MYC by FISH, and showed nuclear expression of MYC and BCL3 by immunohistochemistry. The IGH::BCL3 fusion gene was amplified by long-distance polymerase chain reaction in 2 B-CLL/SLL cases and the breakpoints occurred immediately 5' of BCL3 exon 1 and within the switch region associated with IGHA1. The 5 cases shared IGHV preferentially used in B-CLL cells, but the genes were unmutated in 2 B-CLL/SLL cases and significantly mutated in the remaining 3. B-cell tumors with t(14;19)(q32;q13) can be divided into B-CLL/SLL and DLBCL groups, and the anatomy of IGH::BCL3 in the latter may be different from that of the former.


Assuntos
Infecções por Vírus Epstein-Barr , Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Hibridização in Situ Fluorescente , Translocação Genética , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4 , Linfoma Difuso de Grandes Células B/genética , Cromossomos Humanos Par 14/genética
13.
J Immunother Cancer ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38519055

RESUMO

BACKGROUND: Patients with relapsed/refractory B-cell non-Hodgkin lymphoma (R/R B-NHL) have a significant need for effective treatment options. Odronextamab is an Fc-silenced, human, CD20×CD3 bispecific antibody that targets CD20-expressing cells via T-cell-mediated cytotoxicity independent of T-cell/major histocompatibility complex interaction. Phase I results in patients with R/R B-NHL demonstrated that odronextamab monotherapy could achieve deep and durable responses with a generally manageable safety profile (ELM-1; NCT02290951). As part of a biomarker analysis of the same study, we investigated potential biomarkers and mechanisms of resistance to odronextamab. METHODS: Patients with R/R B-NHL enrolled in ELM-1 received one time per week doses of intravenous odronextamab for 4×21 day cycles, then doses every 2 weeks thereafter. Patient tumor biopsies were obtained at baseline, on-treatment, and at progression. Immune cell markers were analyzed by immunohistochemistry, flow cytometry, single-cell RNA sequencing, and whole genome sequencing. RESULTS: Baseline tumor biopsies showed that almost all patients had high proportions of B cells that expressed the CD20 target antigen, whereas expression of other B-cell surface antigens (CD19, CD22, CD79b) was more variable. Responses to odronextamab in patients with diffuse large B-cell lymphoma were not related to the relative level of baseline CD20 expression, cell of origin, or high-risk molecular subtype. A potential link was observed between greater tumor programmed cell death-ligand 1 expression and increased likelihood of response to odronextamab. Similarly, a trend was observed between clinical response and increased levels of CD8 T cells and regulatory T cells at baseline. We also identified an on-treatment pharmacodynamic shift in intratumoral immune cell subsets. Finally, loss of CD20 expression through inactivating gene mutations was identified as a potential mechanism of resistance in patients who were treated with odronextamab until progression, as highlighted in two detailed patient cases reported here. CONCLUSIONS: This biomarker analysis expands on clinical findings of odronextamab in patients with R/R B-NHL, providing verification of the suitability of CD20 as a therapeutic target, as well as evidence for potential mechanisms of action and resistance.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Linfoma Difuso de Grandes Células B , Humanos , Antineoplásicos/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Resultado do Tratamento , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígenos CD20
14.
Clin Exp Med ; 24(1): 51, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441683

RESUMO

Intravascular large B-cell lymphoma (IVLBCL) is a rare aggressive extranodal non-Hodgkin lymphoma. The predominant, if not exclusive, growth of neoplastic cells within the lumina of small-sized vessels represents the hallmark of the disease. Diagnosis is challenging due to the absence of marked lymphadenopathy, the highly heterogeneous clinical presentation, and the rarity of the condition. Clinical presentation is characterized by variable combinations of nonspecific signs and symptoms (such as fever and weight loss), organ-specific focal manifestations due to altered perfusion, and hemophagocytic syndrome. The rarity of this entity and the paucity of neoplastic cells in biopsy samples hamper the study of recurrent molecular abnormalities. The purpose of this study was to explore the feasibility of a different approach to recover a sufficient amount of DNA of acceptable quality to perform next-generation sequencing studies. Here, we report the findings of whole-exome next-generation sequencing performed on a fresh-frozen cutaneous sample of IVLBCL, paired with the patient saliva used as germline DNA. To increase the cancer cell fraction, only the subcutaneous tissue was selected. With this approach, we obtained high-quality DNA and were able to identify oncogenic mutations specific for this entity and recapitulating its post-germinal center origin, even if the tumor fraction was low. Molecular studies performed on fresh-frozen cutaneous sample are feasible in IVLBCL, especially when analysis is restricted to the subcutaneous tissue. Wide adoption of this reproducible and cost-effective approach may foster further studies, which may be of help in supporting diagnosis, providing pathogenetic insights, and guiding treatment decisions.


Assuntos
Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Humanos , Sequenciamento do Exoma , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Tela Subcutânea , DNA
15.
Cancer Med ; 13(4): e7005, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457222

RESUMO

BACKGROUND: MCD (MYD88L265P /CD79Bmut ) diffuse large B-cell lymphoma has a poor prognosis. There is no published clinical research conclusion regarding zanubrutinib or orelabrutinib for the initial treatment of MCD DLBCL. AIMS: This study aimed to analyse the efficacy and safety of Bruton's tyrosine kinase inhibitor (BTKi) (zanubrutinib or orelabrutinib) therapy for newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut . MATERIALS AND METHODS: Twenty-three newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut from June 2020 to June 2022 received BTKi combined with rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) or rituximab + lenalidomide (R2 ). A control group of 17 patients with MYD88mut and/or CD79Bmut DLBCL who received the standard R-CHOP therapy was also assessed. We retrospectively analysed clinical characteristics, safety, overall response rate (ORR), complete response (CR) rate and progression-free survival (PFS) of the two groups. RESULTS: The main clinical features were a high International Prognostic Index (IPI) score (≥3, 22/40, 55%) and a high rate of extranodal involvement (27/40,67.5%). Among the 23 DLBCL patients, 18 received BTKi + R-CHOP, and five elderly DLBCL patients were treated with BTKi + R2 . Compared with those in the control group (ORR 70.6%, CRR 52.9%, 1-year PFS rate 41.2%), improved ORR, CRR and PFS results were observed in the BTKi + R-CHOP group (100%, 94.4% and 88.9%, p = 0.019, 0.007, and 0.0001). In subgroup analyses based on genetic subtypes, cell origin, dual expression or IPI score, patients in the BTKi + R-CHOP group had better PFS than patients in the control group. In the BTKi + R-CHOP group, no significant difference was found in ORR, CRR and PFS based on subtype analysis, while BTKi-type subgroups exhibited statistically significant differences in 1-year PFS (p = 0.028). There were no significant differences in grade 3-4 haematological toxicity (p = 1) and grade 3-4 non-haematological toxicity (p = 0.49) between the BTKi + R-CHOP and R-CHOP treatment groups. In the BTKi + R2 group, the ORR was 100%, the CRR was 80%, and the 1-year PFS rate was 80%. The incidences of grade 3-4 haematologic toxicity and non-haematological toxicity were both 40%. No bleeding or cardiovascular events of grade 3 or higher occurred in any patients. DISCUSSION: The efficacy of BTKi combined with R-CHOP was similar to previous reports, which was significantly better than R-CHOP alone. It is necessary to fully consider that 14 patients in the BTKi + R-CHOP group received a BTKi as maintenance therapy when evaluating efficacy. Meanwhile, the addition of a BTKi may improve the prognosis of non-GCB, DEL or high-IPI-score DLBCL patients with MYD88mut and/or CD79Bmut . In our study, five elderly DLBCL patients with MYD88mut and/or CD79Bmut were achieved better ORR, CRR, PFS than the historical data of R-miniCHOP treatment and Ibrutinib + R2 treatment. However, the efficacy and benefit of BTKis for this type of DLBCL need to be further analysed using a larger sample size. CONCLUSION: This study suggests that newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut may benefit from BTKis according to real-world clinical data.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Piperidinas , Piridinas , Humanos , Idoso , Rituximab/uso terapêutico , Fator 88 de Diferenciação Mieloide/genética , Intervalo Livre de Doença , Estudos Retrospectivos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Vincristina/efeitos adversos , Ciclofosfamida/efeitos adversos , Doxorrubicina/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Prednisona/efeitos adversos , Antígenos CD79/genética
16.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 44-50, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430041

RESUMO

Molecular pathology and clinical characteristics play a crucial role in guiding treatment selection and predicting the prognosis of diffuse large B-cell lymphoma (DLBCL). The programmed cell death protein 1 (PD-1) and its ligand (PD-L1), have emerged as pivotal regulators of immune checkpoints in cancer. The objectives of this study are to investigate the correlation between the expression levels of PD-1 and soluble PD-L1 (sPD-L1) in the peripheral blood of DLBCL patients, analyze their clinicopathological characteristics, and identify the optimal beneficiary group for PD-1/PD-L1 blockade. Peripheral blood samples were collected from 36 DLBCL patients before their initial treatment at Shandong Cancer Hospital between December 2018 and July 2019. The expression levels of PD-1 and sPD-L1 were measured using flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. The clinicopathological characteristics, including age, sex, Ann Arbor stage, International Prognostic Index (IPI) score, response to treatment, etc., were recorded for each patient. The surface expression of PD-1 on peripheral blood T cells was significantly higher in DLBCL patients compared to healthy controls. There was a significant association between elevated PD-1 expression levels and the advanced Ann Arbor stage (P=0.0153) as well as the B group (P=0.0184). Higher sPD-L1 levels were associated with the GCB subtype according to Hans's classification (P=0.0435). The expression levels of PD-1 and sPD-L1 in the peripheral blood of DLBCL patients are significantly correlated with advanced disease stage, B group, and GCB subtype according to Hans's classification. This suggests that the PD-1/PD-L1 axis play a critical role in specific subgroups of DLBCL. Targeting this axis could serve as a potential therapeutic strategy to enhance the clinical outcomes of DLBCL patients. Further studies are necessary to explore the prognostic implications of PD-1 and sPD-L1 expression levels in DLBCL patients.


Assuntos
Antígeno B7-H1 , Linfoma Difuso de Grandes Células B , Humanos , Antígeno B7-H1/genética , Receptor de Morte Celular Programada 1/genética , Linfoma Difuso de Grandes Células B/genética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo
17.
J Cancer Res Clin Oncol ; 150(2): 98, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381215

RESUMO

OBJECTIVE: The initial therapeutic approach for diffuse large B-cell lymphoma (DLBCL) entails a rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) regimen. However, 40% of patients exhibit suboptimal responses, with some experiencing relapse and refractory conditions. This study aimed to explore novel therapeutic strategies and elucidate their underlying mechanisms in DLBCL. METHODS: Bioinformatics techniques were employed to scrutinize correlations between the HDAC1, HDAC2, HDAC3, HDAC10, BTK, MYC, TP53, and BCL2 genes in DLBCL. In vitro experiments were conducted using DB and SU-DHL-4 cells treated with chidamide, orelabrutinib, and a combination of both. Cell viability was assessed by cell counting kit-8. Cell apoptosis and the cell cycle were determined using flow cytometry. Reactive oxygen species (ROS) production and mitochondrial function were assessed through ROS and JC-1 staining. RNA sequencing and western blot analyses were conducted to elucidate the molecular mechanisms underlying the combined action of chidamide and orelabrutinib in DLBCL cells. RESULTS: This investigation revealed markedly enhanced antiproliferative effects when chidamide was combined with orelabrutinib. Compusyn software analysis indicated a synergistic effect of chidamide and orelabrutinib in inhibiting DLBCL cell proliferation, with a combination index (CI) < 1. This synergy further manifested as augmented cell cycle arrest, apoptosis induction, the downregulation of cell cycle-associated and antiapoptotic proteins, and the upregulation of proapoptotic proteins. Furthermore, the western blot and RNA-Seq findings suggested that combining chidamide and orelabrutinib modulated the PI3K/AKT/mTOR signaling pathway, thereby promoting DLBCL cell cycle arrest and apoptosis. CONCLUSION: The findings of this study provide a compelling justification for the clinical utilization of chidamide and orelabrutinib to treat relapsed/refractory DLBCL.


Assuntos
Aminopiridinas , Benzamidas , Linfoma Difuso de Grandes Células B , Fosfatidilinositol 3-Quinases , Piperidinas , Piridinas , Humanos , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Recidiva Local de Neoplasia , Apoptose , Pontos de Checagem do Ciclo Celular , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Serina-Treonina Quinases TOR , Histona Desacetilases
18.
J Biol Chem ; 300(3): 105762, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367665

RESUMO

Long non-coding RNAs (LncRNAs) could regulate chemoresistance through sponging microRNAs (miRNAs) and sequestering RNA binding proteins. However, the mechanism of lncRNAs in rituximab resistance in diffuse large B-cell lymphoma (DLBCL) is largely unknown. Here, we investigated the functions and molecular mechanisms of lncRNA CHROMR in DLBCL tumorigenesis and chemoresistance. LncRNA CHROMR is highly expressed in DLBCL tissues and cells. We examined the oncogenic functions of lncRNA CHROMR in DLBCL by a panel of gain-or-loss-of-function assays and in vitro experiments. LncRNA CHROMR suppression promotes CD20 transcription in DLBCL cells and inhibits rituximab resistance. RNA immunoprecipitation, RNA pull-down, and dual luciferase reporter assay reveal that lncRNA CHROMR sponges with miR-27b-3p to regulate mesenchymal-epithelial transition factor (MET) levels and Akt signaling in DLBCL cells. Targeting the lncRNA CHROMR/miR-27b-3p/MET axis reduces DLBCL tumorigenesis. Altogether, these findings provide a new regulatory model, lncRNA CHROMR/miR-27b-3p/MET, which can serve as a potential therapeutic target for DLBCL.


Assuntos
Antineoplásicos Imunológicos , Carcinogênese , Resistencia a Medicamentos Antineoplásicos , Linfoma Difuso de Grandes Células B , MicroRNAs , Proteínas Proto-Oncogênicas c-met , RNA Longo não Codificante , Rituximab , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-met/metabolismo
19.
Mol Cancer ; 23(1): 42, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402205

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma. A major mutagenic process in DLBCL is aberrant somatic hypermutation (aSHM) by activation-induced cytidine deaminase (AID), which occurs preferentially at RCH/TW sequence motifs proximal to transcription start sites. Splice sequences are highly conserved, rich in RCH/TW motifs, and recurrently mutated in DLBCL. Therefore, we hypothesized that aSHM may cause recurrent splicing mutations in DLBCL. In a meta-cohort of > 1,800 DLBCLs, we found that 77.5% of splicing mutations in 29 recurrently mutated genes followed aSHM patterns. In addition, in whole-genome sequencing (WGS) data from 153 DLBCLs, proximal mutations in splice sequences, especially in donors, were significantly enriched in RCH/TW motifs (p < 0.01). We validated this enrichment in two additional DLBCL cohorts (N > 2,000; p < 0.0001) and confirmed its absence in 12 cancer types without aSHM (N > 6,300). Comparing sequencing data from mouse models with and without AID activity showed that the splice donor sequences were the top genomic feature enriched in AID-induced mutations (p < 0.0001). Finally, we observed that most AID-related splice site mutations are clonal within a sample, indicating that aSHM may cause early loss-of-function events in lymphomagenesis. Overall, these findings support that AID causes an overrepresentation of clonal splicing mutations in DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Animais , Camundongos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Mutação , Citidina Desaminase/genética
20.
Blood Adv ; 8(8): 1946-1957, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38324724

RESUMO

ABSTRACT: Primary sinonasal diffuse large B-cell lymphoma (PSDLBCL) is a rare lymphoma with a variable prognosis and a unique relapse/dissemination pattern involving the central nervous system and skin. The underlying molecular mechanisms leading to this heterogeneity and progression pattern remain uncharted, hampering patient-tailored treatment. To investigate associated mechanisms, we analyzed clinical data and used immunohistochemistry, gene-expression profiling, cytogenetics, and next-generation sequencing in a cohort of 117 patients with PSDLBCL. The distribution in cell-of-origin (COO) was 68 (58%) activated B-cell (ABC), 44 (38%) germinal center B-cell (GCB), and 5 (4%) unclassifiable. COO was significantly associated with progression-free survival (PFS) and lymphoma-specific mortality (LSM) in both the overall cohort (5-year PFS: ABC, 43% vs GCB, 73%; LSM: ABC, 45% vs GCB, 14%) and in the subgroup of patients receiving immunochemotherapy (5-year PFS: ABC, 55% vs GCB, 85%; LSM: ABC, 28% vs GCB, 0%). ABC lymphomas were mainly MCD class, showing a high prevalence of MYD88 (74%) and CD79B (35%) mutations compared with GCB lymphomas (MYD88 23%; CD79B 10%) (P < .01). The ABC subtype frequently displayed cMYC/BCL2 coexpression (76% vs 18% GCB; P < .001) and HLA-II loss (48% vs 10% GCB; P < .001). PD-L1 expression and copy-number alterations were rare. All lymphomas were Epstein-Barr virus-negative. Our data suggest molecular profiling as a potent tool for detecting prognostic subgroups in PSDLBCL, exposing links to known relapse/dissemination sites. The ABC subgroup's MCD genetic features, shared with lymphomas at other nonprofessional lymphoid sites, make them potential candidates for targeted B-cell and toll-like receptor signaling therapy.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma Difuso de Grandes Células B , Humanos , Fator 88 de Diferenciação Mieloide/metabolismo , Herpesvirus Humano 4/metabolismo , Recidiva Local de Neoplasia , Prognóstico , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...